
Revolutionizing
Lead Generation
In lead generation, speed and accuracy are
the keys to success. If the data is messy, the
company can miss out on revenue. If the
system can't scale, the company will leave
money on the table. This script is designed
to ensure that TLA will never miss an
opportunity. It cleans, processes, and
organizes the data so the team gets the best
leads in real-time. With Azure's unparalleled
scalability, this solution grows TLA business,
ensuring that no lead goes uncaptured, no
matter how many are generated.

How it works:

This script is designed to clean and process
vehicle-related data from a CSV file. It
performs several tasks like correcting
swapped fields, cleaning up date formats,
removing duplicates, and optimizing
memory usage. It logs its progress and
monitors memory consumption during
execution. It was created running in a “venvˮ
virtual environment using a configuration file
(config.json) to store the parameters like file
paths, brand names, and more.

How It Works
The image provided in the input shows a
flowchart of how the script works in
conjunction with Azure services. It illustrates
the data flow from ingestion through
processing to final insights and actions.

At the end, the script generates a cleaned
version of the CSV file, optimized for
memory usage and free from duplicates,
missing values, and incorrect data formats.

The script is set up with logging to track its
progress. If an error occurs (such as a
missing file or invalid data), the script logs
the error and continues with its tasks or
terminates gracefully.

Please download the script from
the Github repository

Key Steps:
Loading Configuration:1.

The script reads a configuration file (config.json) to load settings like the file path for input and
output data.

If the configuration file is not found or invalid, an error is logged.

Logging Memory Usage:2.

The script keeps track of the amount of memory used by logging memory consumption at various
points, which helps identify potential performance bottlenecks.

Loading Data:3.

The script reads the data from a CSV file (path specified in the configuration) into a pandas
DataFrame.

If the file doesnʼt exist or canʼt be parsed, the script logs an error.

Fixing Swapped Fields:4.

The script checks if “Brand ,ˮ “Model ,ˮ or “Derivativeˮ fields have been swapped, based on a list of
known car brands.

If they have been swapped, it corrects them by placing the values in their correct columns.

Handling Missing Values:5.

The script fills missing “Brandˮ values using forward and backward filling (using the closest
available values).

Cleaning Fields (Package and Derivative):6.

The script cleans the “Derivativeˮ field by removing unwanted brackets or text inside square
brackets and extracting that information into a new “Packageˮ column.

Cleaning the Introduced Field (Date):7.

The script ensures the “Introducedˮ field only contains valid dates by cleaning up invalid entries
or unwanted prefixes (like “o ,ˮ “toˮ).

It strips away unwanted characters and extracts valid dates from the strings.

Cleaning the Discontinued Field (Date):8.

Similar to the Introduced field, the script cleans up and standardizes the Discontinued field by
ensuring it contains valid dates.

Removing Duplicates:9.

It checks for and removes any duplicate rows from the DataFrame to ensure the data is unique.

Memory Optimization:10.

The script converts some of the columns (like “Brand ,ˮ “Model ,ˮ “Derivativeˮ) to a more memory-
efficient type (“categoryˮ), which helps reduce memory consumption.

It also converts date columns (“Introducedˮ and “Discontinuedˮ) to the datetime format for better
memory efficiency.

Saving the Cleaned Data:11.

Once the data is cleaned and processed, the script saves the updated DataFrame to a new CSV
file (specified in the configuration).

Timing the Script:12.

The script tracks how long it takes to run the entire process and logs the total time once the
process is completed.

Why It's Perfect for
Lead Generation

1 Elegance and Efficiency
With elegance, efficiency, and the ability to scale
effortlessly. This script is designed to give valuable
insights from their data, while being completely
optimized for Azure cloud scalability.

2 Azure-Ready
Right now, this script is ready to run on Azure,
providing immediate benefits for lead generation
processes.

3 Transformative Potential
This script with Azure has the potential to transform
how businesses generate leads, making it more
efficient, scalable, and automated than ever before.
This is not a problem to solve, it's an opportunity to
excel.

Key Features of the
Script

1 1. Streamlined Logging and Error
Handling
This script integrates robust logging and
error handling. Every single step is
monitored and captured, ensuring
transparency and accountability. If
something goes wrong, it can tell me where,
why, and how to fix it.

2 2. Efficiency in Data Cleaning
The script runs through 7,000 lines of data
effortlessly in 0.38 seconds, optimizing
memory usage by converting fields into the
most efficient types. It s̓ efficient. It s̓ light. It
can be automate the entire data pipeline by
using Azure Functions or Logic Apps to
trigger the data cleaning script whenever
new data arrives in Blob Storage or Data
Lake.

3 3. Parallel Processing
This script uses parallel processing with
Swifter, giving it the ability to handle larger
datasets with ease. It s̓ the multitasking
engine that makes this code more powerful
and faster as the data grows, preparing it
for Databricks by using PySpark it can
distribute the computation across multiple
nodes.

Azure Integration Benefits
Distributed Processing
in Azure Databricks

By transitioning this code to
Azure Databricks, it can
leverage the full power of
distributed computing. Every
single node in Azure s̓ cloud
work together, handling
enormous datasets
effortlessly.

Automation with Azure
Data Factory

With Azure Data Factory, this
script can be scheduled and
run automatically, triggered by
real-time data changes. The
moment new leads come in,
they are cleaned, processed,
and ready for action. It s̓
automation at its best.

Autoscaling with Azure
Functions

Think about this: the company
grows — 10x, 20x, or 100x —
the script doesnʼt even blink. It
scales. Azure Functions can
dynamically allocate resources
to this code based on the
incoming data.

i. Relational Database Schema
In this schema, it is proposed to split the vehicle data into multiple relational tables to normalize the
structure, reduce redundancy, and establish clear relationships between entities like brands, models, and
derivatives.

In the proposed relational database schema, normalization helps reduce data redundancy by storing
unique entries, such as brands, models, and derivatives, only once. These entries are linked through
foreign keys, ensuring that the data is well-organized and efficient. This structure is highly scalable,
allowing new brands, models, or derivatives to be added without needing major changes, which
supports future growth.

Data integrity is ensured by using foreign keys to link related tables, maintaining consistency across the
dataset and reducing the likelihood of errors. Additionally, the relational setup provides flexibility,
allowing new data to be added or modified without disrupting the existing structure, making updates
straightforward and manageable.

Relationships:

Brands → Models:
A one-to-many relationship between Brands and Models. Each brand can have multiple models.

1.

Models → Derivatives:
A one-to-many relationship between Models and Derivatives. Each model can have multiple
derivatives.

2.

Derivatives → Vehicle Info:
A one-to-many relationship between Derivatives and Vehicle Info. Each derivative can have multiple
vehicle entries with different introduction and discontinuation dates.

3.

1. Brands Table
This table contains unique car brands and assigns each brand a unique BrandID to link it to other tables.

Column Name Data Type Description

BrandID INT (Primary Key, Auto
Increment)

Unique identifier for each
brand.

Brand VARCHAR Name of the car brand.

2. Models Table
This table stores the car models, with each model linked to a BrandID as a foreign key to establish a
relationship between the model and the brand.

Column Name Data Type Description

ModelID INT (Primary Key, Auto
Increment)

Unique identifier for each
model.

Model VARCHAR Name of the car model.

BrandID INT (Foreign Key) Foreign key linking to BrandID
in the Brands table.

3. Derivatives Table
Each derivative of a model is stored here. It has a foreign key ModelID that links it to the Models table.

Column Name Data Type Description

DerivativeID INT (Primary Key, Auto
Increment)

Unique identifier for each
derivative.

Derivative VARCHAR Name of the derivative.

ModelID INT (Foreign Key) Foreign key linking to ModelID
in the Models table.

4. Vehicle Info Table
This table stores the introduction and discontinuation dates of vehicles, with a foreign key DerivativeID
linking it to the Derivatives table.

Column Name Data Type Description

VehicleID INT (Primary Key, Auto
Increment)

Unique identifier for each
vehicle entry.

Introduced DATE The introduction date of the
vehicle.

Discontinued DATE The discontinuation date of
the vehicle, if applicable.

DerivativeID INT (Foreign Key) Foreign key linking to
DerivativeID in the Derivatives
table.

ii. An unstructured or
semi-structured
format
Instead of scattering the data across multiple tables, each
with complex relationships, it s̓ possible to hold the entire
brand s̓ story, its models, derivatives, and history, in one
clean, flexible structure. Each brand is its own complete
entity, neatly organized into models, and each model holds
its own derivatives and vehicle history right where you
need it. This structure is ideal for representing car
hierarchies (brands → models → derivatives) in a flexible
format.
Each vehicle's lifecycle (introduced and discontinued
dates) is captured, which is useful for tracking availability
over time

Please download the JSON script from the
Github repository

Azure
Integration
Benefits
The benefits of integrating with Azure go beyond just
storing data. It unlocks a powerful suite of tools that
significantly enhance the efficiency and scalability of this
project.

iii. Technological
Recommendations

1

Data Ingestion with Azure Event
Hub
At the start of any data pipeline, it's important to have
something that can handle a massive influx of real-time
data. For this Azure Event Hub can ingest millions of
events per second. Whether the data is coming from
websites, IoT devices, API'S or forms, Event Hub is built
to scale with the business needs. Event Hub passes the
real-time data seamlessly to Azure Stream Analytics or
Azure Data Lake for storage and immediate analysis.
From 1,000 or 1 million events per second, Event Hub
scales automatically to meet demand.
Cost Estimate: For a website with 45,000 views,
assuming a small portion converts into leads, we can
estimate a medium throughput in Event Hubs. The
estimated cost for this service can range from $50 -
$100 per month, depending on the number of events
per lead form submission.

2

Data Storage with Azure Data Lake
Gen 2
Once that data is ingested, it needs to be stored in a way
that allows for easy access, analysis, and processing. By
using Azure Data Lake Gen 2, which combines scalability
with enterprise-level security. Data Lake Gen 2 integrates
with Azure Databricks and Azure Synapse Analytics for
efficient processing, and Azure Data Factory for
orchestration. Store petabytes of structured and
unstructured data, from transactional logs to multimedia
with no limitations. With hot, cool, and archive tiers, it can
reduce costs by storing less frequently accessed data at
lower prices.
Storing up to 10 GB of leads data monthly could cost
around $2 - $5 per month.

 Data Processing and
Orchestration

1

Data Processing
After the storage all that data needs to be processed,
cleaned, analyzed, and turned into insights. For that:
Azure Databricks and Azure Synapse Analytics. Whether
for running a simple script or complex machine learning
models, Databricks can be scalable, leveraging the
power of Apache Spark for python scripts. Databricks
spins up resources when it's needed and shuts them
down when it's don't, saving costs on compute power.
Synapse can handle petabyte-scale data analytics,
combining structured and unstructured data in one
place. It's possible to run SQL queries, Spark jobs, and
machine learning models all from a single unified
workspace. It can be integrated: Azure Data Factory
orchestrates the movement between Databricks (for
real-time data processing) and Synapse (for high-level
analytics and reporting).
For a small-to-medium business database with
monthly querying and around 4,000 leads, expect
costs between $100 - $150 per month.

2

Data Orchestration
To tie all of this together, can be used Azure Data
Factory. It's the component that automates and
orchestrates the entire data pipeline. It can coordinates
all the services: from data ingestion to storage,
processing, and analytics, ensuring they work in
harmony. Handle thousands of data pipelines
simultaneously. With trigger-based workflows, it can be
paid only for the data movement and necessary
processing. Data Factory links Event Hub, Data Lake,
Databricks, and Synapse Analytics together, ensuring a
seamless data pipeline.
For scheduled data processing and orchestration
tasks, it could cost around $100 - $150 per month. Plus
Azure Logic Apps for Lead Distribution, that can be $20
- $50 per month depending on the number of actions
triggered per lead distribution.

Cost Estimates and
Sources
Total Estimated Monthly Cost: $300 - $500 per month for
the full Azure infrastructure, handling 45,000 views,
generating 4,000 leads, and converting 400 car sales. This
estimate accounts for event ingestion, data processing,
storage, and lead distribution.

Service Estimated Monthly Cost

Event Hub $50 - $100

Data Lake Storage $2 - $5

Azure Databricks and
Synapse Analytics

$100 - $150

Data Factory $100 - $150

Azure Logic Apps $20 - $50

Total Estimated Monthly
Cost

$300 - $500

Cost Data:

Event Hub: ~$0.028 per million events.

Data Lake Gen 2: Hot tier costs ~$0.20 per GB, cool tier
~$0.01 per GB, archive tier ~$0.002 per GB.

Azure Databricks: ~$0.07/hour per cluster.

Azure Synapse Analytics: ~$5 per hour for reserved
compute.

Data Factory: ~$0.001 per pipeline run.

For a pipeline processing 10 million events daily:

Event Hub: ~$0.28/day

Data Lake Storage (hot tier, 100 GB/day): ~$20/day

Databricks Clusters (10 hours/day): ~$0.70/day

Synapse Analytics: ~$50/day for heavy analytics.

Sources:

https://techcommunity.microsoft.com/t5/finops-
blog/optimize-your-azure-costs-with-our-expert-
guidance-pricing-tools/ba-p/4244981

Azure Pricing Calculator

https://techcommunity.microsoft.com/t5/finops-blog/optimize-your-azure-costs-with-our-expert-guidance-pricing-tools/ba-p/4244981
https://techcommunity.microsoft.com/t5/finops-blog/optimize-your-azure-costs-with-our-expert-guidance-pricing-tools/ba-p/4244981
https://techcommunity.microsoft.com/t5/finops-blog/optimize-your-azure-costs-with-our-expert-guidance-pricing-tools/ba-p/4244981

